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COMMENT 

On Smoluchowski’s coagulation equation 

Niels Jmgen Kokholm 
Mathematics Department, Copenhagen University, DK-2100 Copenhagen, Denmark 

Received 8 July 1987 

Abstract. We give a short proof of the global existence and uniqueness of solutions of 
Smoluchowski’s coagulation equation with monodisperse initial conditions. 

1. Introduction 

Leyvraz and Tschudi (1981, hereafter referred to as LT) have considered the system 
of equations 

(LT, p 3394). They find solutions global in time, first for B # 0 and then by a limiting 
process for B = 0. This is in contrast with McLeod (1964, hereafter referred to as M L ~ ) ,  

where it is stated (for the case B = 0 and A = 1) that there is no reasonable solution 
for a wider range of t values than O S  t s 1. The reasons for this discrepancy are their 
different interpretations of the term ‘solution of (1.1)’. McLeod demands ZF=l k2ck to 
be uniformly absolutely convergent on the solution interval, Leyvraz and Tschudi 
merely that (1.1) makes sense pointwise-that Z?=’=, kck is convergent at each point of 
the interval. 

In this comment I give a short proof of the global uniqueness (and existence) of 
solutions of (1.1) with B = 0 in the sense of (LT). The proof is based on a suggestion 
of T A Bak. It uses the methods of McLeod (1962, hereafter referred to as MLI) ,  a 
more thorough investigation of the series Z?=:=, k k - ’ z k / k !  and the fact that continuity 
of kCk follows from the equation and continuous induction. 

2. The theorem 

We consider the coagulation equation with monodisperse initial data: 

] = I  1-1 

We want to solve (2.1) for all t. Let 

x!( t )  = kk- ’ tk - ’ /  k !  
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when 0 d t s 1 
when 1 < t <cc (2.2) 

when 0 c t < 0;) k = 1,2, . . . 
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840 N J Kokholm 

thus x;( t )  is the unique solution for all times of the system 
k - I  

x i (  t )  = 2 j (  k - j ) x , " (  t ) x ; - , (  t )  x; = a l k .  
j = 1  

Before considering (2.1) we prove a technical lemma, which essentially is a precise 
statement of some facts noted in ( M L I ,  p p  122-3). 

Lemma 2.1. The power series 
sc 

$(z) = kk- ' zk /k !  
k = l  

is uniformly convergent in the disc { z \ / ~ l S e - ~ }  and  divergent outside. The sum is 
continuous in the disc, C" in the interior and  satisfies 

$(z)  = z e*(" and I*(z)l c 1 when IzI s e - '  

+( w e-"') = w when I w I s  1. 

Moreover, II, is increasing on [0, e-'] with $(O) = 0 and  +(e-') = 1. 

Proof: By Stirling's formula, kk- ' zk /  k !  - kP3'*(z e )k  as k +. W, which implies the 
assertions on the convergence, and hence the assertions on continuity and  diff erenti- 
ability of $. To prove (2.1), note that when /wI = 1 and  IzI <e- '  then Iz e"l= / z /  e'Hw < 1; 
thus by RouchC's theorem, the equation 

w - z e " = 0  (i.e. z = w e-") 

has exactly one solution w with IwI < 1 when /zI <e- ' ,  since this is true when z = 0. 
By the residue theorem, that solution is given by 

oc k 
dw=-  f ( 1 - z e " )  (-> dw 

(d/dw)( w - z e") 
w - z e W  27ri l w l = ,  k = O  

'f 27ri w 

X 

= k h - ' z h / k ! =  $(z).  
k = l  

Thus $(z) = z e"'' and  ll(I(z)/ S 1 when Iz/ < e - ' ,  hence by continuity for IzI s e - ' .  Since 
Iw eCWl <e - '  when ( w I  < 1, +(w e-") = w then, hence for ( w I  s 1 by continuity. The last 
assertion follows immediately. 

Theorem 2.2. (i) If we define ck on [o, X [  by 

c,(t) = xO,(r) e-k"""' k = 1,2,  . . . 
then all ck are continuously differentiable for O s  t <a: 

1 when 0 s  tc  1 sc 

when l < r < m  c kCk(t) = { l / t  
h z l  

and (2.1) is satisfied for all 1. 

(ii) If 0 > 0 and ck, k = 1, 2, . . . , are continuously differentiable functions on [0, e [  
such that X:=l kck(t)  is convergent for all t E [ O ,  e [  and (ck) satisfies (2.1) on [0, e [ ;  
then (ck) is given by (2.4) for C E  [0, e[. 
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ProoJ: Assume 0 and ( ck )  given as in (ii). Note that c,(O) = 1 > 0 and  let e l  be the 
largest positive number S O  such that c , ( t )>O when 0 s  t <  el (we shall prove that 
e l  = e) .  By (2.1) for C , ,  XFzl jc,(t) is continuous on [0, e,[, thus we may define 

Then 4 is continuously differentiable, 4(0) =0 ,  d(0) = 1 and  by (2.1), &(o)  = and 

k - 1  

( 1 - 1  ) / = 1  

X 

X k ( f ) =  ik(t)+kCk(f) j C , ( t )  e k d " ' = i  1 j (k- j )x , ( t )xk- , ( f ) .  

It follows that xk( t )  = x:( t )  on [o, e,[, and  thus 

k - 1  k = l  k = l  

By assumption this series is convergent, so the lemma implies 

0 s  1 e - ' ( ' ) s  e - '  and t q i ( t ) =  +(r  on [O, e,[. (2.6) 

We must prove that 4(  t )  = 4'( 1 )  on [0, el[. To d o  that, let O2 be the largest positive 
number s e l  such that t e-"') < e-' when 0 s t < er .  By (2.6) and the lemma, 4 is C" 
on IO, e,[, t i (  t )  < 1 there and  we have 

d ( t )  =; 1 ~ ( t  e-d'") =- 1 t e -  4 ( [ )  exp[+(t e-d(t))]  = e - m ( r ) + r m c r )  

when O <  t < 8,. By differentiation, c$( t )  = d( t ) t & t ) .  Hence &( t )  = 0 when 0 < t < O2 
and therefore 4( t )  = t on [0, e,[. Since t e-' <e- '  when t < 1, we get O2 = min{ 1, el}. 

Now assume 0 , > 1 ;  then by (2.6) and  the lemma, 4 ( t ) z l + l o g r  and d ( f ) =  
( l / r ) + (  t e-"'") s ( l / t )  on IO, el[, hence when 1 s t < e l  : 

t 

1 +log t s c$( t )  s 4(  1) + - d u  s 1 + log t I,' f, 
and thus 4 ( t )  = q5'( t )  when 0 s  t < e l .  To prove (ii) it remains to be proved that 8 ,  = 8, 
but c , ( t )=x: ( t )  e -" ( r )  when O S  t s e l ,  and x:( e,)  e-bn(eI)> 0, so O1 = e by the 
definition of 0 , .  

To prove (i), note that with ck defined by (2.4), the computation (2.5) and the 
lemma shows that 

= do( t ) .  

Thus 

=c 

Ck ( t )  = -kCk ( t ) 1 jc, ( t + ( t e-kdn( ') .  

Using (2.3), (2.1) follows and the theorem is proved. 

J - 1  
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Note that without any significant change in the proof, the condition in (ii) that the c k  
be C' may be weakened to the ck being absolutely continuous (and the series convergent 
almost everywhere). 
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